and anatomy (microvascular pathology). There is a growing need for scientists who can communicate among disciplines so that very effective research collaborations can be developed.

Cell Biology/Physiology research areas include function of transcription factors in development, disease, and in the promotion of regeneration; fluid and electrolyte pathophysiology in cystic fibrosis; molecular genetics of human cell response to environmental carcinogens; tumor suppressor genes in malignant melanoma; molecular basis of Down syndrome; factors controlling lymphocyte differentiation; mechanisms of action of cytok Dice and lymphokines; physiological aspects of host–parasite interaction; and host defense mechanisms in infectious disease; and mucosal immunity and molecular approaches to vaccine development.

Neurosciences research areas include studies of the hypothalamic control of homeostatic and sexual function; molecular mechanisms of neurendocrine system; neuronal death and neurodegeneration with emphasis on the following diseases: Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, Huntington’s disease, stroke and pathogen-induced encephalitis.

Admission Applicants should have completed an undergraduate degree in one of the physical or biological sciences and must submit scores from the GRE General Test (verbal and quantitative). GRE requirement not applicable to UCR Biomedical Sciences students applying for the M.D.–Ph.D.) Courses required for admission include one year each of general chemistry, organic chemistry, physics, and calculus and at least two years of biological sciences. Preferred upper-division courses in biology include vertebrate or human anatomy and physiology, embryology, genetics, cell biology, microbiology, immunology, and neuroscience.

Doctoral Degree The aim of the graduate program in Biomedical Sciences is to train Ph.D. scientists in a specific area of research specialization who also have enough general knowledge in the basic medical sciences to apply their research expertise to unraveling the basis of disease. This approach includes understanding not only pathogenic manifestations of disease but also the normal physiologic state. To accomplish this, the student completes a core and elective curriculum, the latter tailored to the student’s research interests.

Core requirements include:
1. BMSC 229: Foundations of Translational Research
2. BMSC 232, 233, 234 and 235: Foundations of Medicine Series
3. BMSC 260A, BMSC 260B, BMSC 260C: Topics in Biomedical Research. The entire 3 quarter series is required in the first year of graduate education.
4. BMSC 261: Methods in Biomedical Research. Enrollment required all 3 quarters of the first year of graduate education.
5. BMSC 252: General seminar in Biomedical Sciences (enrollment required each quarter)
6. BMSC 254: Graduate seminar in Biomedical Sciences (enrollment required each quarter)
7. BMSC 302: (one-quarter requirement, not required of M.D.–Ph.D. students)

Under normal circumstances, each student should complete course work requirements during the first year of studies.

At the end of the student’s first full year of residence, the advisory committee for each student evaluates the progress of the student and recommends to the faculty whether the student should continue in the program.

In addition, prior to advancement to candidacy and at the beginning of each academic year, the student presents a written summary of the research progress and plans to the advisory committee. Continuation in the program depends on the advisory committee’s positive evaluation of the student’s research progress.

Written and Oral Qualifying Examinations Prior to advancement to candidacy, students must complete both parts of a qualifying examination. Part I consists of the preparation of a research proposal, to be written in the form of a grant proposal, including literature review, description of methods and experimental plans for the dissertation. This proposal should outline the research progress of the student to date and delineate the planned dissertation research aims and objectives. Part I is usually completed in the spring quarter of year 2 and no later than the fall quarter of year 3 of a student’s graduate training. Part II consists of an oral comprehensive examination administered by a committee of five faculty members, at least one of whom is from outside the program. The student’s research advisor does not serve on the oral qualifying committee. The oral comprehensive examination includes examination of the student’s knowledge and understanding of material covered in the core courses and in the student’s area of specialization. Part II must be completed no later than the end of year 3 of the student’s graduate training.

Research Project, Dissertation and Final Oral Examination After successful completion of the qualifying examination and advancement to candidacy, the student completes the research project, submits a written dissertation, and defends the dissertation in a final oral examination.

Normative Time to Degree 15 quarters

M.D.–Ph.D. Combined Degree Admission The combined degree is offered to students admitted to the medical school phase of the Biomedical Sciences Program and to exceptional students from other four-year LCME-accredited medical schools. Normally, a student completes the first two years of medical school, and then spends approximately three years in the Ph.D. part of the program before completing the M.D. degree. However, the track is also offered to students who have completed the M.D. degree. UCR Biomedical Sciences students may apply for admission concurrently with their applications to the medical school phase or any time after acceptance to the medical school phase. For these students only, the MCAT is accepted in lieu of the GRE.

Students from other medical schools should apply in the fall of their sophomore or senior year. Applications from sophomores must be accompanied by official permission for an appropriate leave of absence. The GRE requirement is the same as for regular Ph.D. students.

Master’s Degree The Biomedical Sciences Graduate Group offers an M.S. degree. No students are admitted directly into the program for work toward the master’s degree. However, a Plan I (Thesis) or Plan II (Comprehensive Examination) M.S. degree is available in special circumstances when work leading to the Ph.D. degree cannot be completed. The student’s advisory committee decides whether the master’s degree is an appropriate alternative to the Ph.D. degree. This decision may be made at the end of the student’s first year of residence or at other times in the student’s career, particularly at the time of the qualifying examination.

Course Descriptions All Biomedical Sciences courses are listed and described under Biomedical Sciences.

Further information regarding graduate studies in Biomedical Sciences may be obtained from the Division of Biomedical Sciences.

Botany and Plant Sciences

Subject abbreviation: BPSC

College of Natural and Agricultural Sciences

Jodie S. Holt, Ph.D., Chair
Department Office, 2132 Batchelor Hall
Graduate Student Affairs (800) 735-0717
or (951) 827-5688
Undergraduate Advising Center (951) 827-3579; plantbiology.ucr.edu

Professors
Edith B. Allen, Ph.D. Community/Restoration Ecology
Julia N. Bailey-Serres, Ph.D. Genetics
Timothy J. Close, Ph.D. Genetics

Jodie S. Holt, Ph.D., Chair
Major

The Departments of Botany and Plant Sciences, Plant Pathology and Microbiology, and Nematology participate in an interdepartmental program leading to either a B.A. or B.S. degree in Plant Biology. In addition, these departments and others participate in the Plant Biology Track within the interdisciplinary Biological Sciences major. In this program, students earn a B.S. degree in Biological Sciences. Course requirements for the Plant Biology Track are listed under the Biological Sciences major in this catalog. Both majors are designed to provide students with basic knowledge in the natural sciences and in their chosen field of specialization.

Courses prerequisite to the major, courses used to satisfy major requirements, and the 16 units (for B.S. degree) related to the major must be taken for letter grades. Students may elect to take other courses on a Satisfactory (S)/No Credit (NC) basis. Refer to the Academic Regulations section of this catalog for additional information on “SNC” grading.

Information about this program is available from the CNSA Academic Advising Center (1223 Pierce Hall, Monday through Friday, 9 a.m. to noon and 1 to 4 p.m., [951] 827-4186).

Transfer Students

Students planning to transfer to UCR with a major in Plant Biology must have a minimum GPA of 2.7 in transferable college courses and “C” or higher grades in a year sequence of general chemistry and in courses equivalent to our BIOL 005A, BIOL 005B. We also recommend that transfer students complete a year of college calculus before admission. Exceptions may be granted by the faculty advisor.

University Requirements

See Undergraduate Studies section.

College Requirements

See College of Natural and Agricultural Sciences, Colleges and Programs section.

Some of the following requirements for the major may also fulfill some of the college’s breadth requirements. Consult with a department advisor for course planning.

Major Requirements

The major requirements for the B.S. and B.A. degrees in Plant Biology are as follows:

1. Life Sciences core requirements (68-72 units)

- Students must complete all required courses with a grade of “C-” or better and with a cumulative GPA in the core courses of at least 2.0. Grades of “D” or “F” in two core courses, either separate courses or repetitions of the same course, are grounds for discontinuation from the major.

 a) BIOL 005A, BIOL 005B, BIOL 005C
 b) CHEM 001A, CHEM 001B, CHEM 001C
 c) MATH 008B or MATH 009A, MATH 009B (MATH 009C recommended)
 d) PHYS 002A, PHYS 002B, PHYS 002C, PHYS 002A, PHYS 002B, PHYS 002C
 e) STAT 100A

 f) BCH 100 or BCH 110A (BCH 110A is strongly recommended)

Note

for the B.S. degree, courses in Statistics and Biochemistry taken as part of the core may count toward the 24 units from an area of specialization. For the B.A. degree, courses in Statistics and Biochemistry taken as part of the core may not count toward the 16 units required from an area of specialization.

2. Upper-division requirements (40-52 units)

A GPA of at least 2.0 in upper-division courses taken in the field of the major is a graduation requirement. A student is subject to discontinuation from the major whenever the GPA in upper-division course work is below 2.0. Students finding themselves in this circumstance must meet with an advisor.

 a) BIOL 102
 b) BPSC 104/BIOL 104 (may be waived with consent of the faculty advisor)
 c) BIOL 132/BPSC 132, BIOL 143/BPSC 143, BPSC 133
 d) At least 8 units from the following:
 BIOL 100/ENTM 100, BIOL 120/MCBL 120/PLPA 120, BIOL 120/MCBL 120/PLPA 120, BIOL 121/MCBL 121, BIOL 121/MCBL 121, BIOL 123/MCBL 123/PLPA 123, BIOL 124/MCBL 124, BIOL 134/PLPA 134, BIOL 134/PLPA 134L, BIOL 159/NEM 159, BPSC 134/ENSIC 134/SWSC 134, ENSIC 134/SWSC 134, ENSIC 134/SWSC 134, ENSIC 134/SWSC 120, ENSIC 120
 e) Two (2) units of BPSC 195H, BPSC 197, BPSC 198-I, or BPSC 199

f) For the B.S.

 Additional units from one of the four areas of specialization (consult with a faculty advisor) and additional upper-division courses in biological sciences and related areas from any of the areas of specialization lists, and students may apply a maximum of 6 units of any of these courses toward this requirement. Students planning a B.A. degree should schedule the required language courses in place of a series of electives.

Areas of Specialization

Individual student career goals may be achieved by selecting an area of specialization within the diverse disciplines of botany and plant sciences. Adjustments within these programs can be made to accommodate students’ interests. Students must consult with a faculty advisor to clarify educational goals and to plan a program of study.

1. Plant Cellular, Molecular, and Developmental Biology
Requirements for the minor in Plant Biology

1. BIOL 104/BPSC 104 (4 units)
2. One course (4–5 units) from the following:
 BIOL 132/BPSC 132, BIOL 138/
 BPSC 138, BIOL 143/BPSC 143, BPSC 133
3. Twelve (12) to 20 units from the following:
 ANTH 170/BPSC 170, BCH 153/BIOL 153/
 BPSC 153, BIOL 132/BPSC 132, BIOL
 138/BPSC 138, BIOL 143/BPSC 143, BIOL
 148/BPSC 148, BIOL 155/BPSC 155, BIOL
 165/BPSC 165, BPSC 133, BPSC
 134/ENS 134/SWSC 134, BPSC 135,
 BPSC 146, BPSC 150, BPSC 158, BPSC
 166, BPSC 190, BPSC 195H, BPSC 197,
 BPSC 198-I, BPSC 199

Note: No more than 4 units of BPSC 190–199
may be used to fulfill this requirement. The
course used to fulfill the requirement in 2.
cannot also be used to fulfill the requirement in 3.
See Minors under the College of Natural
Agricultural Sciences in the Colleges and
Programs section of this catalog for additional
information on minors.

Graduate Program

The Department of Botany and Plant Sciences
provides programs leading to the M.S. degree in
Plant Biology with two tracks, Botany or Plant
Science, and a program leading to the Ph.D.
degree in Plant Biology or Plant Biology (Plant
Genetics). Research in these programs can
focus on basic and/or applied questions.

Admission

Applicants who have a baccalaureate
degree and who satisfy the general require-
ments of the university listed in the Graduate
Studies section of this catalog are considered
for admission to graduate status. Students
applying to the Ph.D. program and domestic
applicants to the M.S. program must submit
GRE General Test scores (verbal, quantitative,
and analytical).

Regardless of the area of their major for the
baccalaureate degree, students must have had,
or complete soon after entering graduate
coursework the following:

1. A year of coursework in general biology and
general chemistry
2. A course in genetics, biochemistry, and cal-
culus
3. Two courses in physics and/or statistics.

Credit from these courses does not count
forward toward the graduate degree.

Immediately after being admitted, each student
should identify a faculty advisor and consult
with that advisor or the graduate advisor
regarding educational goals; scheduling initial
course work and possible lab rotations; and
forming a guidance committee. Further guid-
ance on these matters is provided in the Bot-
any and Plant Sciences Graduate Student
Handbook.

Master's Degree

The Department of Botany and Plant Sciences
offers programs leading to the M.S. degree in
Plant Biology with tracks in Botany or Plant
Science.

The master's degree may be earned under
Plan I (Thesis) or Plan II (Comprehensive
Examination). Students must meet all general
requirements of the Graduate Division. The
detailed course program is determined by
the guidance committee after considering the
specific interests of the student. Department
requirements are as follows:

Plan I (Thesis)

1. Three courses from Section I of either the Bot-
any track or the Plant Science track M.S. list
2. Two courses from Section II. In fulfilling the
Section II requirement, students may use no
more than one course cross-listed by Botany
and Plant Sciences and another program. If
such a cross-listed course is used toward
fulfilling the Section II requirement, the
same course may not be used toward fulfill-
ing the Section I or III requirements.
3. At least 6 units from Section III of either the Bot-
any track or Plant Science track M.S. list
4. Preparation of a thesis (not more than 12
 units from Section V may apply toward the
degree)

If the student takes research courses from
Section IV, not more than 6 units may be
applied toward the degree. Students who have
taken courses comparable to those in Section I
during their baccalaureate training may have a
portion or all of this section waived. In such
instances, however, it is expected that their
programs include increased units in courses
from Sections II, III, and/or IV. Recommendations
for waivers should specify alternative
courses and should be sent to the department
educational advisory committee for approval.

Plan II (Comprehensive Examination)

1. Three courses from Section I of either the Bot-
any track or Plant Science track M.S. list
2. Two courses from Section II. In fulfilling the
Section II requirement, students may use no
more than one course cross-listed by Botany
and Plant Sciences and another program. If
such a cross-listed course is used toward
fulfilling the Section II requirement, the
same course may not be used toward fulfill-
ing the Section I or III requirements.
3. At least 12 units from Section III of either the Bot-
any track or Plant Science track M.S. list
4. At least 6 units from Section IV for a
 research project or literature review, which
 should be described in a report to be sub-
 mitted for evaluation by the comprehensive
 examination committee
5. Comprehensive written and oral examinations

Students who have taken courses comparable
to those in Section I during their baccalaureate
training may have a portion or all of this section
waived. In such instances, however, it is expect-
ed that their programs include increased units
in courses from Section II and/or III. Recommendations
for waivers should specify alternative courses and should be sent to the
educational advisory committee for approval.

Seminar Requirement

All full-time students
must enroll in the BPSC 250 and BPSC 260 seminars during each quarter in which they are offered. Part-time students must take one BPSC 250 and one BPSC 260 seminar for every 12 units of courses. Students may enroll in an equivalent seminar course as a replacement for the BPSC 260 seminar. All students must present at least one BPSC 250 seminar and complete at least two quarters of BPSC 240 (or equivalent).

Courses available for fulfilling the requirement for the M.S. degree:

Section I — Upper-division undergraduate courses:

Section II — Graduate and upper-division undergraduate courses in related departments or programs: Applicable courses are determined by the educational advisory committee and require approval of the graduate advisor.

Section III —

- **Botany track** BCH 205/BPSC 205/CMDB 205 GEN 205/MCBL 205/PLPA 205, BCH 231/BPSC 231, BPSC 201 (E-Z) (for a maximum of 2 units), BPSC 210, BPSC 223, BPSC 232, BPSC 233, BPSC 234, BPSC 237, BPSC 239, BPSC 240 (only if taken in addition to the required seminar units; see seminar requirement), BPSC 243, BPSC 245, BPSC 247, BPSC 280

- **Plant Science track** BCH 205/BPSC 205/CMDB 205 GEN 205/MCBL 205/PLPA 205, BCH 231/BPSC 231, BPSC 201 (E-Z) (for a maximum of 2 units), BPSC 220, BPSC 221, BPSC 222, BPSC 223, BPSC 232, BPSC 233, BPSC 234, BPSC 237, BPSC 239, BPSC 240 (only if taken in addition to the required seminar units; see seminar requirement), BPSC 243, BPSC 245, BPSC 247, BPSC 280

Section IV — Research courses: BPSC 290 and BPSC 297

Section V — Thesis research: BPSC 299, Thesis for Plan I

Normative Time to Degree 7 quarters

Doctoral Degree

The Department of Botany and Plant Sciences offers programs leading to the Ph.D. degree in Plant Biology or Plant Biology (Plant Genetics). Students must meet the general requirements of the Graduate Division.

Admission Either prior to entering the graduate program or before advancement to candidacy, students must have completed the equivalent of BPSC 104 and one other course from the core plant biology courses (BIOL 107A, BPSC 132, BPSC 135, BPSC 138, BPSC 143, BPSC 146). Course requirements for each student are determined by individual guidance committees and by the educational advisory committee. No later than the second quarter in residence, students meet with a guidance committee to determine a course program to be submitted to the educational advisory committee, and to choose an area of specialization in Plant Biology or Plant Biology (Plant Genetics) and two minor areas.

Course Work Guidance committees and students should design individual course programs that meet the specific needs of the student and the requirements of the Ph.D. program. Course programs should prepare students for the qualifying examination and dissertation research. Students must take a minimum of three graduate-level courses relevant to the specialization. Graduate courses taken previously may be considered towards fulfilling this requirement. Students’ course programs must be approved by the educational advisory committee. At the time of submission of course programs to the educational advisory committee, the area of specialization and two minor areas to be covered on the qualifying examination should be specified. Students may petition to change the course program, area of specialization, or minor areas at any time.

Ph.D. in Plant Biology (Concentration in Plant Cell, Molecular, and Developmental Biology)

To earn the concentration in Plant Cell, Molecular, and Developmental Biology (appears on the transcript only), students must complete BPSC 231, BPSC 232, and BPSC 237. In addition, one of the two required BPSC 240 courses must be on a topic related to the concentration.

Ph.D. in Plant Biology (Plant Genetics)

Requires three graduate courses relating to the specialization. Required courses must include two courses from the following: BPSC 221, BPSC 222, BPSC 223, BPSC 234, BPSC 237, BPSC 239, BPSC 240 (only if taken in addition to the required seminar units; see seminar requirement), BPSC 243, BPSC 245, BPSC 247, BPSC 280

One BPSC 240 course should be in a topic related to Genetics.

Written and Oral Qualifying Examinations

Advance to candidacy depends on the student passing written and oral qualifying examinations. The qualifying examination covers the student’s area of specialization and two minor areas. Granting of the degree is contingent upon acceptance of the dissertation by the candidate’s dissertation committee and satisfactory oral defense of the dissertation.

Seminar Requirement

All candidates must enroll in the BPSC 250 and BPSC 260 seminars during each quarter in which they are offered. Students may enroll in an equivalent seminar course as a replacement for BPSC 260. Also, students must present at least one BPSC 250 seminar in addition to the defense of the dissertation. The dissertation defense is normally presented in the BPSC 250 seminar series; however, if necessary, a special seminar may be scheduled for the defense. All students must complete at least two quarters of BPSC 240 (or approved similar equivalent that involves substantial student presentations) during the Ph.D. program.

Foreign Language Requirement

None

Teaching Requirement

Students must obtain at least one quarter of teaching experience.

Normative Time to Degree 15 quarters

Lower-Division Courses

BPSC 011. Plants and Human Affairs (4) W, F Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): none. An introduction for nonscience and non-Botany majors to the importance of plants and plant products in the shaping of human affairs and civilization. Covers the origin and practice of agriculture; the utilization of plant products; the latest agricultural advances, including genetic engineering; and the current agricultural and social issues. Plants and plant products are examined during class demonstrations and exercises.

Close, Huang

BPSC 021. California’s Cornucopia: Food from the Field to Your Table (5) S Lecture, 3 hours; discussion, 1 hour; outside activities, 30 hours per quarter. Prerequisite(s): none. Examines California’s diverse agricultural products. Addresses related contemporary issues such as crop improvement by biotechnology, climate change, pollution, resource use, and nutrition. Also examines how the interplay of geography, history, and culture shapes the cuisine of a region.

Ellstrand

BPSC 031. Spring Wildflowers (4) S Lecture, 3 hours; laboratory, 3 hours; one Saturday field trip. Prerequisite(s): none. General approach to the study of vegetative and floral features of plants as a means of identification and botanical classification of major plant families in Southern California. Secondary emphasis on the field biology of flowering plants.

Kim

BPSC 097. Lower-Division Research (1-4) Individual study, 3-12 hours. Prerequisite(s): consent of instructor. Involves special research projects in plant biology performed under faculty supervision. Requires a final written report. Graded Satisfactory (S) or No Credit (NC). Course is repeatable to a maximum of 6 units.
Upper-Division Courses

BPSC 104. Foundations of Plant Biology (4) F, S
Lecture, 3 hours; laboratory, 2 hours. Prerequisite(s): BIOL 005C. A study of the plant world from cells to ecosystems. Examines the structure and function of organisms from the major plant groups and their role in the biosphere. The laboratory explores the unique properties of plants. Cross-listed with BIOL 104.

Nothnagel, Holt

BPSC 112. Systematics (4) F Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 005C or equivalent. Principles and philosophy of classification. Topics include mycological and phenetic methods, species concepts, taxonomic characters, evolution, hierarchy of categories, and nomenclature. Cross-listed with BIOL 112 and ENMT 112.

BPSC 132. Plant Anatomy (5) F Lecture, 3 hours; laboratory, 6 hours. Prerequisite(s): BIOL 005A and BIOL 005B, or consent of instructor. Functional and developmental aspects of plant cell, tissue, and organ structure. All aspects of the flowering plant life cycle are covered from germination to pollination and fruit and seed development. Cross-listed with BIOL 132.

DeMason

BPSC 133. Taxonomy of Flowering Plants (5) Lecture, 3 hours; laboratory, 3 hours; three 1-day Saturday field trips. Prerequisite(s): BIOL 005C. Introduces the principles and methods of identifying, naming, and classifying flowering plants. Surveys selected flowering plant families in California and shows their interrelationships. Kim

BPSC 134. Soil Conditions and Plant Growth (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 104/BPSC 104, ENSC 100/SWSC 100 or ENSC 100H/SWSC 100. Primarily of interest to the student of the chemical, physical, and biological properties of soils and their influence on plant growth and development. Topics include soil-plant water relations; fundamentals of plant mineral nutrition; soil nutrient pools and cycles; soil acidity, alkalinity, salinity, and sodicity; root symbioses and rhizosphere processes. Cross-listed with ENSC 134 and SWSC 134.

BPSC 135. Plant Cell Biology (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 005C, BCH 100 or BCH 110A, or consent of instructor. Explores concepts of dynamic plant cell structures and functions as revealed by modern technologies such as genetic manipulation and live-imaging of cellular structures and molecules. Smith

BPSC 138. Morphology of Vascular Plants (4) W, Even Years Lecture, 2 hours; laboratory, 6 hours. Prerequisite(s): BIOL 005A, BIOL 053A, BIOL 053B, BIOL 005C, CHEM 001C or CHEM 01HC, CHEM 112C, MATH 009B or MATH 09HB, PHYS 002C, PHYS 02LC, BCH 100 or BCH 110A (BCH 100 or BCH 110A may be taken concurrently); or consent of instructor. Investigates the comparative morphology and evolution of vascular plants with use of fossil and living representatives, focusing on the Angiosperms. Cross-listed with BIOL 138.

Springer

BPSC 143. Plant Physiology (4) W Lecture, 3 hours; laboratory, 3 hours; three 1-day Saturday field trips. Prerequisite(s): BIOL 005A, BIOL 005B, BIOL 005C, CHEM 001C or CHEM 01HC, CHEM 112C, MATH 009B or MATH 09HB, PHYS 002C, PHYS 02LC, BCH 100 or BCH 110A (BCH 100 or BCH 110A may be taken concurrently), BIOL 104/BPSC 104; or consent of instructor. A survey of the fundamental principles of plant physiology, including photosynthesis, respiration, water relations, mineral nutrition, growth, morphogenesis, plant hormones, dormancy, and senescence. Cross-listed with BIOL 143.

Lovatt

BPSC 146. Plant Ecology (4) Lecture, 3 hours; laboratory, 18 hours per quarter; field trip, 12 hours per quarter. Prerequisite(s): BIOL 104/BPSC 104 or BIOL 116 or consent of instructor. A study of the fundamental principles of ecology emphasizing community ecology, environment, life histories, population dynamics, species interactions, succession, ecosystem and landscape ecology, and plant conservation ecology. Allen

BPSC 148. Quantitative Genetics (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 005A, BIOL 053A, BIOL 053B, BIOL 005C, BIOL 102, CHEM 001C or CHEM 01HC, CHEM 112C, MATH 009B or MATH 09HB, PHYS 002C, PHYS 02LC, BCH 100 or BCH 110A, STAT 100B; or consent of instructor. Examines approaches to studying the genetic basis of polygenic, metric traits. Includes types of gene action, partitioning of variance, response to selection, and inferring the number and location of quantitative trait loci. Cross-listed with BIOL 148.

Xu

BPSC 150. Principles of Plant Breeding (4) W, Even Years Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 102; STAT 100A is recommended. Applies the principles of classical, quantitative, and molecular genetics to the development of improved cultivars of crop plants. Waines, Roose

BPSC 153. Plant Genomics and Biotechnology Laboratory (4) F, Spring Years Lecture, 1 hour; laboratory, 6 hours. Prerequisite(s): BCH 110C or BIOL 107A; upper-division standing; consent of instructor. A study of modern techniques in plant genome modification. Topics include nucleic acid cloning and sequencing; plant tissue culture and genetic transformation; controlled-environment plant growth; gene mapping, and germlasm collections. Also explores the history of plant biotechnology; economic, agricultural, nutritional, medicinal, and societal relevance; and regulatory issues. Cross-listed with BCH 153 and BIOL 153.

Close, Eulgem

BPSC 155. Chromosomes (4) F Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 005A, BIOL 005B, BIOL 005C, CHEM 001C or CHEM 01HC, CHEM 112C, MATH 009B or MATH 09HB, PHYS 002C, PHYS 02LC, BCH 100 or BCH 110A (BCH 100 or BCH 110A may be taken concurrently); or consent of instructor. An examination of the structure, function, and behavior of eukaryotic chromosomes. Cross-listed with BIOL 155.

Lukaszewski

BPSC 158. Subtropical and Tropical Horticulture (4) F, Even Years Lecture, 4 hours; occasional field trips. Prerequisite(s): BIOL 005C or BIOL 104/BPSC 104 or consent of instructor. Studies the important subtropical and tropical crops of the world, emphasizing fruits, including citrus and avocado, with special reference to their botany, germlasm resources, climatic adaptation, and culture. Waines

BPSC 165. Restoration Ecology (4) Lecture, 3 hours; two 1-day field trips; three half-day field trips. Prerequisite(s): BIOL 104/BPSC 104 or BIOL 116 or ENSC 100/SWSC 100 or ENSC 100H/SWSC 100H; CHEM 112A; STAT 100A (STAT 100A may be taken concurrently); or consent of instructor. BIOL 102 and CHEM 112C are recommended. An examination of the basic ecological principles related to land restoration. Topics include enhanced succession, plant establishment, plant adaptations, ecotypes, weed colonization and competition, nutrient cycling, functions and reintroduction of organics, restoration for wildlife, and the determination of successful restoration. Includes field trips to restored sites. Cross-listed with BIOL 165.

Allen

BPSC 166. Plant Physiological Ecology (4) W, Odd Years Lecture, 3 hours; laboratory, 3 hours. Prerequisite(s): BIOL 005C or consent of instructor; university-level courses in mathematics, physics, and chemistry are recommended. Topics include plant responses to light, temperature, evaporative demand, and limiting soil conditions. Explores photosynthesis, plant-water relations, and plant-temperature relations. Gives attention to plant adaptation to climates with varying aridity and temperature extremes. Santiago

BPSC 170. Ethnobotany (4) F Lecture, 2 hours; seminar, 1 hour; discussion, 1 hour. Prerequisite(s): BIOL 104/BPSC 104 or consent of instructor. Introduces students to ethnobotanical research by reviewing selected ethnobotanical studies. Topics covered by lectures include fundamentals of ethnobotany, the search for new medicines and other products made from plants, the role of humans in plant evolution, and the impact of plants on human cultures. Discussions focus on the past and present role of humans in plant conservation and the search for sustainable management practices in agriculture and forestry. Seminars by invited guests and enrolled students present selected topics in ethnobotany. Cross-listed with ANTH 170.

BPSC 185. Molecular Evolution (4) S Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 105 or BIO107A or consent of instructor; BIOL 108 is recommended. Explores the evolution of genes, proteins, and genomes at the molecular level. Focuses on the processes that drive molecular evolutionary change. Covers basic methodological tools for comparative and phylogenetic analyses of molecular data from an evolutionary perspective. Liu

BPSC 190. Special Studies (1-5) F, W, S variable hours. Library, laboratory or field work designed to meet special curricular needs. A written proposal signed by the supervising faculty member must be approved by the major advisor and the Department Vice Chair. A written report must be filed. Course is repeatable to a maximum of 12 units.

BPSC 195H. Senior Honors Thesis (1-4) Thesis, 3-12 hours. Prerequisite(s): upper-division standing; admission to the University Honors Program or consent of instructor. Directed research and completion of a senior Honors thesis under the supervision of a faculty member. Course is repeatable to a maximum of 12 units.

BPSC 197. Research for Undergraduates (1-4) F, W, S Outside research, 3-12 hours. Prerequisite(s): upper-division standing; consent of instructor. Individual research conducted under the direction of a Botany and Plant Sciences faculty member. A written proposal must be approved by the supervising faculty member and undergraduate advisor. A written report must be filed with the supervising faculty member at the end of the quarter. Course is repeatable.

BPSC 198L. Individual Internship in Botany and Plant Sciences (1-12) Internship, 2-24 hours; written work, 1-12 hours. Prerequisite(s): upper-division standing; consent of instructor. An off-campus internship related to botany and plant science. The student conducts the internship in the public or private sector but is jointly supervised by an off-campus sponsor and a faculty member in Botany and Plant Sciences. Requires an initial written proposal and a final written report. Graded Satisfactory (S) or No Credit (NC). Course is repeatable to a maximum of 12 units.

BPSC 199. Senior Research (2-4) F, W, S Laboratory, 6-12 hours. Prerequisite(s): senior status; a GPA of 3.2 or better in upper-division courses in Botany/Plant Science and Biology; or consent of instructor. Individual research on a problem relating to
Botany/Plant Science. A written proposal signed by the supervising faculty member must be approved by the major advisor and the Department Vice Chair. A written report must be filed with the supervising faculty member. Course is repeatable, but total credit toward graduation may not exceed 9 units.

Graduate Courses

BPSC 201 (E-Z). Methods in Plant Biology (1-2) F, S, W Laboratory, 3-6 hours. Prerequisite(s): consent of instructor. Explores the theories and principles of instruments and laboratory techniques applicable to research in the plant sciences. Experiments provide experience in the use of laboratory instruments and techniques including applications and limitations. E. Plant Molecular Biology; F. Plant Ecology; G. Plant Systematics; I. Plant Microscopy; J. Plant Physiology; K. Plant Genetics; M. Plant Cell Biology; N. Plant Cytogenetics. Segments are repeatable as content changes.

BPSC 205. Signal Transduction Pathways in Microbes and Plants (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): graduate standing in the biological sciences, BIOL 107A or BIOL 113 or BIOL 114 or CBNS 101; or consent of instructor. Advanced topics in signal transduction pathways that regulate growth and development in plants and prokaryotic and eukaryotic microbes. Areas covered include two-component regulatory systems; quorum sensing; signaling via small and heterotrimers; G proteins; mitogen-activated protein kinase cascades; RAMP signaling; photoreceptors; plant hormone signaling; responses to low-oxygen stress; calcium signaling; and plant pathogenesis. Cross-listed with BCH 205, CBMB 205, GEN 205, MB 205, and PLPA 205.

BPSC 210. Methods In Arabidopsis Research (4) Lecture, 1 hour; discussion, 1 hour; laboratory, 6 hours. Prerequisite(s): BCH 110C or BIOL 107A; or BIOL 102; consent of instructor. A study of modern techniques used in Arabidopsis research. Topics include plant growth conditions, pest control, genetic crosses, chemical and insertion mutagenesis, genetic mapping techniques, nucleic acid isolation and manipulation, transformation, and internet resources. Eulgem

BPSC 221. Advanced Plant Breeding (4) S, Even Years Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 148/BPSC 148 or consent of instructor; BPSC 150. Advanced treatment of plant breeding theory and practice including development and use of information on inheritance of traits; choice of breeding plans; breeding for yield, quality, and disease and stress resistance; and use of biotechnology. Roose

BPSC 222. Origins of Agriculture and Crop Evolution (3) W, Odd Years Lecture, 3 hours. Prerequisite(s): BIOL 102, BIOL 104/BPSC 104; or consent of instructor. Analysis of origins of agriculture in the Near East, China, the New World, and Africa. Survey of domestication and evolution of major crop plants and animals. Waines

BPSC 223. Applied Evolutionary Genetics (4) W, Odd Years Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 105; BIOL 108; or consent of instructor. An in-depth exploration of evolutionary changes resulting from anthropogenic activities, focusing on genetic changes in populations that affect human well-being. Examines current topics such as conservative genetics, evolution of resistance, and evolutionary impacts of technology. Readings in primary literature and popular media interpretations of that literature. Eilstrang

BPSC 230. Molecular Plant-Microbial Interactions (3) Lecture, 2 hours; discussion, 1 hour. Prerequisite(s): BIOL 100, BIOL 120/CBMB 120/PLPA 120, or equivalents. A study of the physiology of host-pathogen interactions with emphasis on the metabolism of diseased plants, nature of pathogenicity, and defense mechanisms in plants. Cross-listed with CMDB 230, GEN 230, and PLPA 230.

BPSC 231. The Plant Genome (4) W Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BCH 100, BIOL 107A; or BCH 110A, BCH 110B, BCH 110C; or consent of instructor. Gives students an appreciation for the structure of the plant nuclear, chloroplast, and mitochondrial genomes. Gene structure, regulation of gene expression, transposons, and methods of gene introduction are also emphasized. Cross-listed with BCH 231. Chen, Eulgem, Walling

BPSC 232. Plant Development (4) S Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BCH 110C or BIOL 107A; BIOL 102, BIOL 104/BPSC 104; or consent of instructor. An examination of plant development, with emphasis on the genetic mechanisms used in patterning plant forms. Topics are taken from current literature and focus on molecular and cellular mechanisms. Gnebehay, Springer

BPSC 233. Plant Molecular Responses to the Abiotic Environment (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 107A, BIOL 143/BPSC 143; or consent of instructor. Integrates plant physiological and molecular responses to the abiotic environment. Explores molecular responses to environmental factors such as light, nutrients, and abiotic stress. Topics include mechanisms of gene regulation, function of novel gene products, and approaches to improve crop plants for unfavorable environments.

BPSC 234. Statistical Genomics (4) F, Even Years Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 102, STAT 231B; or consent of instructor. Examines statistical methods of genome analysis. Topics include screening for genetic markers, linkage analysis, linkage disequilibrium, and mapping genes for complex diseases and quantitative traits. Covers statistical techniques, including analysis of least squares and maximum likelihood, Bayesian analysis, and Markov chain Monte Carlo algorithms. Xu

BPSC 235. Principles of Light Microscopy (4) W Lecture, 2 hours; laboratory, 6 hours. Prerequisite(s): graduate standing in the life sciences or consent of instructor. Principles and practice of preparing biological tissues for light microscopy. Topics include bright field and variations on the compound microscope, fluorescence and confocal microscopy, fixation, histochemical methods, immunolocalization, in situ localization, and digital image analysis. Carter, DeMason

BPSC 237. Plant Cell Biology (4) F Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 107A or BIOL 143/BPSC 143 or BIOL 100 or CBNS 101 or their equivalents, or consent of instructor. Studies the structure, function, and dynamics of plant cell division, expansion, and specialization. Emphasis on aspects unique to plants including cytokinetic and cell plate dynamics during cytokinesis; intracellular trafficking and wall-dynamics during expansion; and targeting to chloroplasts and vacuoles during specialization. Raikhel, Yang

BPSC 239. Advanced Plant Physiology (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 143/BPSC 143 or consent of instructor. Examines advances in plant physiology, with emphasis on carbon and nitrogen metabolism, mineral nutrition, solute transport and phloem translocation, plant growth regulators, and secondary compounds in relation to growth and development. Lovatt

BPSC 240. Special Topics in Plant Biology (2) F, W, S Seminar, 2 hours. Prerequisite(s): consent of instructor. Discussion of current literature within special areas of plant science. Graded Satisfactory (S) or No Credit (NC). Course is repeatable.

BPSC 243. Plant Physiological Ecology (4) Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 143/BPSC 143; BIOL 146 or equivalent; or consent of instructor. Analyzes adaptations and responses of plants to their environment, with emphasis on the physical environment, photosynthesis, temperature and water relations, growth and allocation, and plant interactions. Santiago

BPSC 245. Advanced Plant Ecology (4) F, Even Years Lecture, 3 hours; discussion, 1 hour. Prerequisite(s): BIOL 109C or BIOL 109HC; STAT 100B or equivalent; an undergraduate course in ecology; or consent of instructor. Explores the fundamental ecological concepts, theoretical developments, quantitative methods, and experimental results involved in multiscale plant ecological studies. Emphasizes plant strategies, vegetation processes, ecosystem properties, and terrestrial landscapes and their interaction with environmental change and human land use. Li

BPSC 247. Ecological Theory and Modeling (4) W, Even Years Lecture, 2 hours; discussion, 2 hours. Prerequisite(s): MATH 099C or MATH 099HC; STAT 100B or equivalent; an undergraduate course in ecology; or consent of instructor. Explores the fundamental ecological theory and modeling methodology with emphasis on the ecosystem and landscape levels. Synthesizes current research developments in the context of their classic works. Li

BPSC 250. Seminar in Plant Biology (1) F, S Seminar, 1 hour. Prerequisite(s): graduate standing or consent of instructor. Intensive study of selected topics in plant biology. Students who present a seminar receive a letter grade; other students receive a Satisfactory (S) or No Credit (NC) grade. Course is repeatable.

BPSC 252. Special Topics in Botany/Plant Science (1) F, W, S Seminar, 1 hour. Prerequisite(s): graduate standing and consent of instructor. Oral presentations and intensive small-group discussion of selected topics in the area of special competence of each staff member. Course content will emphasize recent advances in the special topic area and will vary accordingly. Graded Satisfactory (S) or No Credit (NC). Course is repeatable.

BPSC 260. Seminar in Plant Physiology, Botany, or Genetics (1) W Seminar, 1 hour. Prerequisite(s): graduate standing or consent of instructor. Lectures, discussions, and demonstrations by students, faculty, and invited scholars on selected subjects concerned with the principles of plant physiology, botany, or genetics. Graded Satisfactory (S) or No Credit (NC). Course is repeatable.

BPSC 261. Seminar in Genetics, Genomics, and Bioinformatics (1) W, S Seminar, 1 hour. Prerequisite(s): graduate standing or consent of instructor. Oral reports by visiting scholars, faculty, and students on current research topics in Genetics, Genomics, and Bioinformatics. Graded Satisfactory (S) or No Credit (NC). Course is repeatable. Cross-listed with BCH 261, BIOL 261, ENTM 261, GEN 261, and PLPA 261.

BPSC 290. Directed Studies (1-6) F, W, S Individual study, 3-18 hours. Prerequisite(s): consent of instructor. Library, laboratory, or field studies conducted under the direction of a faculty member. Designed to
meet special or unexpected curricular needs in areas of plant biology not covered by formal course work. Students who complete assigned extra work receive letter grades; other students receive Satisfactory (S) or No Credit (NC) grades. Course is repeatable.

BPS 291. Individual Study in Coordinated Areas (1-6) F, W, S Preerequisite(s): graduate standing. A program of study designed to advise and assist candidates who are preparing for examinations. Up to 6 units may be taken prior to the master's degree. Up to 12 units may be taken prior to advancement to candidacy for the Ph.D. Graded Satisfactory (S) or No Credit (NC). Course is repeatable upon recommendation of the instructor.

BPS 292. Concurrent and Advanced Studies in Botany and Plant Sciences (1-4) F, W, S Outside research, 3-18 hours. Prerequisite(s): consent of instructor. Elected concurrently with an appropriate undergraduate course, but on an individual basis. Devoted to one or more graduate projects based on research and criticism related to the course. Faculty guidance and evaluation is provided throughout the quarter. Course is repeatable.

BPS 292. Concurrent and Advanced Studies in Botany and Plant Sciences (1-6) F, W, S Prequisite(s): graduate standing or consent of instructor. Individual research conducted under the direction of a Botany and Plant Sciences faculty member. Graded Satisfactory (S) or No Credit (NC). Course is repeatable.

BPS 299. Research for Thesis or Dissertation (1-12) F, W, S Graded Satisfactory (S) or No Credit (NC). Course is repeatable for credit, but not for credit.